SUPPORTING INFORMATION

Total Synthesis of Iejimalide A-D and Assessment of the Remarkable Actin-Depolymerizing Capacity of these Polyene Macrolides

Alois Fürstner, ${ }^{* a}$ Cristina Nevado, ${ }^{a}$ Mario Waser, ${ }^{a}$ Martin Tremblay, ${ }^{a}$ Carine Chevrier, ${ }^{a}$ Filip Teplý, ${ }^{a}$ Christophe Aïssa, ${ }^{a}$ Emilie Moulin, ${ }^{a}$ and Oliver Müller ${ }^{b}$
${ }^{a}$ Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
${ }^{b}$ Max-Planck-Institut für Molekulare Physiologie, D-44227 Dortmund, Germany
E-mail: fuerstner@mpi-muelheim.mpg.de

Full reference 26: Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Schuerch, F.; Seger, M.; Schreiner, K.; Daeffler, R.; Osmani, A.; Bixel, D.; Loiseleur, O.; Cercus, J.; Stettler, H.; Schaer, K.; Gamboni, R.; Bach, A.; Chen, G.-P.; Chen, W.; Geng, P.; Lee, G. T.; Loeser, E.; McKenna, J.; Kinder, F. R.; Konigsberger, K.; Prasad, K.; Ramsey, T. M.; Reel, N.; Repič, O.; Rogers, L.; Shieh, W.-C.; Wang, R.-M.; Waykole, L.; Xue, S.; Florence, G.; Paterson, I. Org. Process Res. Dev. 2004, 8, 113-121.

General Methods: All reactions were carried out in flame-dried glassware under Ar. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}$, 1,4-dioxane (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right), \mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}$, pyridine $\left(\mathrm{CaH}_{2}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$, DMF (Desmodur ${ }^{\circledR}$, dibutyltin dilaurate), hexane, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a Bruker DPX 300, AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32$ ppm). IR: Nicolet FT-7199 spectrometer, wavenumbers (\widetilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FTMS (7 T magnet). Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. Unless stated otherwise, commercially available compounds (Fluka, Lancaster, Aldrich) were used as received.

'First Generation' Syntheses of the Building Blocks

Scheme S1. Reagents and conditions: a) MeI, $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{MeCN}, 92 \%$; b) (i) DIBAl-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}$; (ii) $\mathrm{MeCOC}\left(=\mathrm{N}_{2}\right) \mathrm{P}(\mathrm{O})(\mathrm{OMe})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 70 \%$ (over both steps); c) TBSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP cat., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; d) n-BuLi, MeI, THF, 98%; e) $\mathrm{Bu}_{3} \mathrm{SnH}$, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5 \mathrm{~mol} \%)$, THF, 65%; f) TBAF, THF, 93%; g) (i) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 84 \%$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, n$ - BuLi , THF, $-35^{\circ} \mathrm{C} \rightarrow$ RT, 87%.

The original route to the northern hemisphere of 2 employed commercial lactone 31 (ee $=96 \%$) as the starting material, which was O-methylated and reduced with DIBAl-H to the corresponding hemiacetal that allowed for the installation of an alkyne unit by reaction with the Ohira-Bestmann reagent (Scheme S1). ${ }^{1}$ O-Silylation of S-2 and end-capping of the alkyne in S-3 with a methyl group set the stage for a palladium-catalyzed hydrostannation which converted S-4 into product S-5 in 65% yield. ${ }^{2}$ The elaboration of this compound into the required building block 36 was readily achieved by cleavage of the silyl ether, oxidation of the resulting primary alcohol with Dess-Martin periodinane, ${ }^{3}$ and Wittig olefination of the resulting aldehyde.
${ }^{1}$ (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.
${ }^{2}$ Small amounts ($10-15 \%$) of the regioisomeric alkenyl-stannane could be separated by flash chromatography. Moreover, the corresponding pinacolborane has also been prepared; however, this compound failed to undergo productive cross coupling with alkenyl iodide 43.
3 (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. (b) Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. (c) Boeckman, R. K., Jr.; Shao, P.; Mullins, J. J. Org. Synth. 2000, 77, 141.

Scheme S2. Reagents and conditions: a) DIBAl-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; b) compound S-7, LiHMDS, THF, $-78^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}, 75 \%$ (over both steps); c) aq. HCl, THF, 91%; d) N-(5-chloro-2-pyridyl)-bis-(trifluoromethansulfonimide), KHMDS, THF, $-78^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}, 60-65 \%$; e) MeZnCl , $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, THF, $50^{\circ} \mathrm{C}, 91 \%$; f) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 91 \%$; g) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ h) $\mathrm{CHI}_{3}, \mathrm{CrCl}_{2} \cdot 1.8 \mathrm{THF}, \mathrm{THF} / 1,4$-dioxane (1:6), 62% (over two steps).

Access was gained by DIBAl-H reduction of the known Roche ester derivative 37^{4} and chain extension of the resulting aldehyde with the functionalized phosphonate $\mathbf{S - 7}{ }^{5}$ furnishing enol silane S-8 as a single isomer (Scheme S2). This compound was then converted into the corresponding enol triflate 39 of opposite double bond configuration by acid catalyzed hydrolysis followed by treatment of S-9 with Comins reagent ${ }^{6}$ in the presence of KHMDS as the optimal base. Triflate 39 could be cross coupled with MeZnCl in the presence of catalytic amounts of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} .{ }^{7}$ The elaboration of the resulting product 40 into the required building block 43 followed the route described in the Text of the paper.

Heckrodt, T. J.; Mulzer, J. Synthesis 2002, 1857.
5 (a) Ceccarelli, S. M.; Piarulli, U.; Telser, J.; Gennari, C. Tetrahedron Lett. 2001, 42, 7421. (b) Horne, D.; Gaudino, J.; Thompson, W. J. Tetrahedron Lett. 1984, 25, 3529.
${ }^{6}$ Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299.
7 Negishi, E.; Zheng, X.; Tan, Z.; Qian, M.; Hu, Q.; Huang, Z. In Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds., 2nd ed.; Wiley-VCH: Weinheim, 2004; Vol. 2; pp 815.

Scheme S3. Reagents and conditions: a) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 91 \%(\mathrm{R}=\mathrm{Ac})$; $85 \%(\mathrm{R}=-\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me})=\mathrm{CHMe})$; b) HOAc, THF, $50^{\circ} \mathrm{C}$; c) compound 57, EDC, HOBt, Nmethylmorpholine (NMM), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 95 \%$ (over steps a)-c)).

Although the degradation pathway of $\mathbf{5 1}$ has not been rigorously investigated, model studies were undertaken that explain, at least in part, this unexpected behavior (Scheme S-3). Thus, treatment of the compound $\mathbf{S - 1 0}$ ($\mathrm{R}=$ Ac, tiglinic acid) with TBSOTf$/ 2,6-l u t i d i n e ~ c o n v e r t e d ~ t h e s e ~$ compounds into a common product $\mathbf{S - 1 3}$ which was obtained in high yield as a mixture of diastereomers. It is believed that the conjugated diene efficiently communicates activation of the Boc-moiety by the Lewis acid to the seemingly remote substituent residing at C .23 (iejimalide numbering). Rearrangement of the π-system with extrusion of the ester then engenders formation of the heterocyclic motif.
In striking contrast to the acetate case, however, the corresponding pivalate $\mathbf{S - 1 0}(\mathrm{R}=\mathrm{Piv})$ allowed for the clean removal of the Boc-substituent; the bulky ester most likely forces this substrate to adopt a conformation in which orbital overlap between the $\mathrm{C}-\mathrm{O} \sigma$-bond and the π system of the diene is minimized, thus effectively blocking the decomposition pathway. The resulting amine $\mathrm{S}-\mathbf{1 4}$ was coupled to the L-serine derivative 57^{8} under standard conditions to give product S-15 in excellent overall yield. The striking difference in the behavior of acetate and pivalate clearly features our still limited capacity to properly assess the degree of the homology between recorded and projected cases.

[^0]Caspase Assay. The activities of caspases 3 and 7 were quantified by the use of a commercial reagent kit (Caspase-Glo 3/7 by Promega) in a coupled enzymatic reaction, which has been used for assaying caspase activity and apoptosis in a large variety of applications. ${ }^{9}$ In this assay the luciferin-coupled tetrapeptide DEVD is used as a luminogenic substrate for caspase 3/7. The substrate is added to the cells and following caspase cleavage, a new substrate for luciferase (amino-luciferin) is released, resulting in the luciferase reaction and the production of light. The luminescent signal, produced in the luciferase reaction is proportional to the caspase activity. The assay was performed according to the protocol provided by the supplier. Thus, $5 \times 10^{3} \mathrm{NIH} 3 \mathrm{~T} 3$ cells were seeded in each well of a white-walled 96 -well luminometer plate (Corning Life Sciences) and cultured in $100 \mu \mathrm{~L}$ Dulbecco's Modified Eagle Medium (Invitrogen) supplemented with 10% fetal calf serum (DMEM/FCS) at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in a humidified incubator. On the next day, cells were washed with PBS and fresh DMEM/FCS was added. The compounds were dissolved as 5 mM stock solution in DMSO. For each final concentration a 10x concentrated adding solution (AS) was prepared by diluting the stock solution in DMEM/FCS, e.g. for the final concentration $10 \mu \mathrm{M}, 2 \mu \mathrm{~L}$ of the stock solution were added to $98 \mu \mathrm{~L}$ DMEM/FCS to prepare the $100 \mu \mathrm{M}$ AS. Five percent DMSO in DMEM/FCS served as negative control AS. Ten microliters of each AS and of the negative control AS were added to the wells and the cells were incubated for another 24 h . Cells were washed with PBS and $100 \mu \mathrm{~L}$ of the lysis/test reagent was added to each well. The plate was covered with a plate sealer and incubated for 40 min at room temperature on a plate shaker. The luminescence was measured in a multi-well plate reader (CentroXS LB960, Berthold Technologies). The luminescence of the negative control was set as 100% and all other values were referred to this value. All concentrations were tested in triplicates.
Actin Assay. Murine NIH/3T3 fibroblasts (CRL-1658 from ATCC) were cultured at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in Dulbecco's modified Eagle's medium supplemented with 4 mM L-glutamine, $4.5 \mathrm{~g} / \mathrm{L}$ glucose and 10% bovine calf serum. 2×10^{4} cells were seeded on coverslips in one well of a 24 well plate. After adapting and attaching over night, the cells were incubated with $1 \mu \mathrm{M}, 5 \mu \mathrm{M}$ or $10 \mu \mathrm{M}$ of the corresponding iejimalide derivative for 18 h . Before and after each fixation or staining step the cells were washed three times with TPBS (0.2% Tween 20 in phosphate-buffered saline). Cells were fixed with 3.7% formalin in PBS. For blocking unspecific epitopes, fixed cells were incubated with 1% powdered milk in PBS. Actin filaments were stained for 1 h with a solution of 77 nM TRITC labelled phalloidin (P1951, Sigma) in TPBS. Cell nuclei were stained with DAPI (2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride, D9542, Sigma). Cells were visualized and photographed with a Zeiss Axiophot fluorescence microscope.
(a) Feng, Y.; Ariza, M. E.; Goulet, A. C.; Shi, J.; Nelson, M. A. Biochem. J. 2005 392, 65. (b) Liu, D.; Li, C.; Chen, Y.; Burnett, C.; Liu, X.Y.; Downs, S.; Collins, R. D.; Hawiger, J. J. Biol. Chem. 2004, 279, 48434. (c) Notebaert, S.; Duchateau, L.; Meyer, E. Vet. Res. 2005, 36, 229. (d) Ren, Y. G.; Wagner, K. W.; Knee, D. A.; Aza-Blanc, P.; Nasoff, M.; Deveraux, Q. L. Mol. Biol. Cell 2004, 15, 5064.

Building Blocks: Preparation of Boronate 19

Compound 10. Bis(trimethylsilyl)acetylene ($25.3 \mathrm{~mL}, 0.111 \mathrm{~mol}$) was added to a solution of acid
 chloride 9 ($12.3 \mathrm{~mL}, 0.111 \mathrm{~mol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{AlCl}_{3}(14.9 \mathrm{~g}, 0.111 \mathrm{~mol})$ was added in small portions over 5 min . The reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 10 min and at $20^{\circ} \mathrm{C}$ for 1 h . For work-up, the mixture was poured onto aq. $\mathrm{HCl}(1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$, the aqueous phase was extracted with diethyl ether, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated (because of volatility of the product, the heating bath of the rotary evaporator was set to $20^{\circ} \mathrm{C}$ and the applied vacuum was kept at $\geq 30 \mathrm{mbar}$). The residue was purified by Kugelrohr distillation to yield $\mathbf{1 0}$ as a colorless oil ($16.64 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.81$ (tdd, $J=16.8,10.2,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=186.9,136.3,115.7,101.9,98.0,44.3,27.8,0.8$; IR (film): $\widetilde{v}=3081,2963,2902$, 2152, 1680, 1643, 1439, 1409, 1356, 1253, 1227, 1115, 1094, 1031, 998, 968, 915, 865, 847, $762,704,626,589 \mathrm{~cm}^{-1}$; HRMS (EI/FE): m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{OSi}$: 180.097041 [$\left.M^{+}\right]$; found: 180.097232; elemental analysis calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{OSi}$ C $66.61, \mathrm{H} 8.94$; found: $\mathrm{C} 66.46, \mathrm{H}$ 8.98 .

Compound 12. A flame-dried Schlenk flask was charged with ketone $\mathbf{1 0}$ ($8.37 \mathrm{~g}, 0.0446 \mathrm{~mol}$) and degassed isopropanol (350 mL). The resulting solution was purged
 with Ar for 1.5 h before the ruthenium complex $\mathbf{1 1}$ was added as a solid $(0.175 \mathrm{~g}, 0.0292 \mathrm{~mol})$. The resulting mixture was again purged with Ar before it was stirred for 19 h at $20^{\circ} \mathrm{C}$. For work up, the mixture was transferred into a round-bottomed flask (with diethyl ether), the solvents were evaporated under reduced pressure (due to volatility of the product, the heating bath of the rotary evaporator was set to $20^{\circ} \mathrm{C}$ and the applied vacuum was kept at $\geq 30 \mathrm{mbar}$), and the crude product was purified by flash chromatography (hexanes/ethylacetate, $50: 1 \rightarrow 30: 1$) to give alcohol 12 as a colorless oil ($8.31 \mathrm{~g}, 98 \%$). $[\alpha]_{D}^{20}=+6\left(c=0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84(\mathrm{tdd}, J=6.7,10.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.7,115.3$, 106.5, 89.7, 62.4, 36.8, 29.4, -0.1; IR (film): $\widetilde{v}=3336,3079,2959,2900,2863,2173,1642$, $1440,1415,1332,1251,1121,1068,1046,1016,955,913,895,844,761,700,648,612,555$, $489 \mathrm{~cm}^{-1}$; MS (EI): m/z: 167 (9), 149 (8), 140 (17), 127 (15), 125 (12), 99 (45), 92 (10), 91 (32), 75 (100), 73 (73), 61 (12), 45 (21), 43 (13), 41 (13); elemental analysis calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OSi}$: C 65.87, H 9.95; found: C 65.72, H 9.84.

Compound 13. $n-B u L i(10.6 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes) was added dropwise over a period of 10 min
 via a syringe pump to a solution of compound $12(3.10 \mathrm{~g}, 0.017 \mathrm{~mol})$ in THF (60 mL) at $-78^{\circ} \mathrm{C}$. Once the addition was complete, stirring was continued for 10 min at $-78^{\circ} \mathrm{C}$ before $\mathrm{MeI}(8.5 \mathrm{~mL}, 0.137 \mathrm{~mol})$ was added dropwise to the mixture. The temperature was then raised to
$-25^{\circ} \mathrm{C}$, at which point DMSO (2.5 mL) was slowly introduced, causing the formation of a white precipitate. After stirring for 1 h at that temperature, the cooling bath was removed and stirring continued at $20^{\circ} \mathrm{C}$ for 21 h . The reaction mixture was poured to a $1: 1$ mixture of ice and aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated (due to high volatility of the product, the heating bath of the rotary evaporator bath was set to $20^{\circ} \mathrm{C}$ and pressure kept at $\geq 35 \mathrm{mbar}$) to give product 13 as pale yellow oil ($3.30 \mathrm{~g}, 99 \%$, ee $=98.8 \%$). The crude product is pure enough for immediate use in the next step. $[\alpha]_{D}^{20}=-37.9\left(c=0.61, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=5.83(\mathrm{tdd}, J=6.7,10.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=138.4,115.1$, 105.0, 90.9, 71.3, 56.4, 35.1, 29.8, 0.0; IR (film): $\widetilde{v}=3079,2958,2927,2854,2822,2170,1642$, $1465,1450,1415,1335,1251,1160,1107,1011,994,922,844,761,700,652,612 \mathrm{~cm}^{-1}$; HRMS (CI/FE i-butane): m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OSi}+\mathrm{H}$: $197.135980\left[M^{+}+\mathrm{H}\right]$; found: 197.136170; elemental analysis calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OSi}$: C 67.28, H 10.27; found: C 67.06, H 10.18.

Compound 14. To a solution of compound $13(1.29 \mathrm{~g}, 0.0066 \mathrm{~mol})$ in 1,4-dioxane/water ($50 / 16$ $\mathrm{mL})$ at $20^{\circ} \mathrm{C}$ were sequentially added 2,6 -lutidine $(1.5 \mathrm{~mL}, 0.0134$

14 $\mathrm{mol}), \mathrm{OsO}_{4}(1.6 \mathrm{~mL}, 0.00013 \mathrm{~mol}, 2.5 \% w / w$ in $t-\mathrm{BuOH})$ and NaIO_{4} $(5.65 \mathrm{~g}, 0.0264 \mathrm{~mol})$. The resulting heterogeneous mixture was stirred for 3 h before it was diluted with water, the aqueous phase was extracted with tert-butyl methyl ether and EtOAc, the combined organic layers were washed with $\mathrm{HCl}(1 \mathrm{~m})$ and brine, dried over MgSO_{4}, and carefully evaporated (due to high volatility of the product, the heating bath of the rotary evaporator bath was set to $20^{\circ} \mathrm{C}$ and pressure kept at $\geq 35 \mathrm{mbar}$) The crude product was purified by flash chromatography (pentanes $/ \mathrm{Et}_{2} \mathrm{O}, 15: 1$) to give product 14 as a colorless oil ($995 \mathrm{mg}, 76 \%$). $[\alpha]_{D}^{20}=-82.1\left(c=0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.79(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dt}, J=7.2,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.8,103.5,91.7,70.5,56.6,39.7,28.2,0.1$; IR (film): $\widetilde{v}=2960$, 2941, 2900, 2824, 2724, 2170, 1727, 1466, 1440, 1412, 1390, 1334, 1251, 1201, 1178, 1114, 1091, 1017, 989, 958, 919, 844, 761, 700, 668, $612 \mathrm{~cm}^{-1}$; HRMS (CI/FE i-butane): m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}$: $199.115434\left[M^{+}+\mathrm{H}\right]$; found: 199.115280; elemental analysis calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C} 60.56$, H 9.15; found: C 60.43, H 9.08.

Compound 15. A Schlenk flask was charged with $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Me}) \mathrm{COOMe}(1.63 \mathrm{~g}$,
 $0.00489 \mathrm{~mol})$, 18-crown-6 ($0.860 \mathrm{~g}, 0.00325 \mathrm{~mol}$) and toluene (27 $\mathrm{mL})$. A solution of KHMDS ($9.25 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene) was added dropwise at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min before it was cooled to $-20^{\circ} \mathrm{C}$. A solution of aldehyde 14 $(0.936 \mathrm{~g}, 0.00472 \mathrm{~mol})$ in toluene (16 mL) was added over 15 min and stirring continued for 10 min at that temperature before the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After stirring for another 1.5 h , the reaction was quenched at $0^{\circ} \mathrm{C}$ with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the
aqueous layer was extracted with tert-butyl methyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the crude product purified by flash chromatography (hexanes/ethyl acetate, 20:1) to give product 15 as a colorless oil ($1.10 \mathrm{~g}, 87 \%$, ee $=95.5 \%$). $[\alpha]_{D}^{20}=-18.1\left(c=0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.95(\mathrm{qt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dd}, J=2.7,1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.80(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,141.9,127.7,104.3,90.7$, $71.1,56.4,51.3,35.2,25.7,20.7,0.0$; IR (film): $\widetilde{v}=2955,2901,2843,2822,2169,1720,1648$, 1456, 1435, 1367, 1334, 1251, 1227, 1198, 1175, 1134, 1108, 1074, 1009, 950, 844, 761, 700, 672, $616 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}: 291.13916\left[M^{+}+\mathrm{Na}\right]$; found: 291.13924; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}$ Si: C 62.64 , H 9.01; found: C $62.76, \mathrm{H}$ 8.89 .

Compound 16. A solution of DIBAl-H ($7.0 \mathrm{~mL}, 1.0 \mathrm{~m}$ in hexanes) was slowly added to a solution of compound $15(745 \mathrm{mg}, 0.00277 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$
 mL) at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred at that temperature for 1 h . For work-up, the reaction was quenched with EtOAc (80 mL) and the solution was slowly warmed to $0^{\circ} \mathrm{C}$. A sat. aq. solution of Rochelle's salt was added (40 mL) and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 45 min to ensure a clean separation of the phases. The aqueous layer was extracted with EtOAc, and the combined organic phases were dried over MgSO_{4} and evaporated, affording alcohol $\mathbf{1 5 b}$ which is pure enough for immediate use in the next step ($656 \mathrm{mg}, 99 \%$). $[\alpha]_{D}^{20}=-17.8\left(c=1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ $(\mathrm{s}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.8,127.0,104.3,91.2$, $70.6,61.5,56.1,35.2,23.4,22.0,0.0$; IR (film): $\widetilde{v}=2360,2358,2550,2341,667 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}: 241.162142$ [$M^{+}+\mathrm{Na}$], found: 241.162386; elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: C 64.95, H 10.06; found: C 64.91, H 10.25.

$\mathrm{MnO}_{2}(2.20 \mathrm{~g}, 0.0216 \mathrm{~mol})$ was added in portions over 5 min to a solution of crude $\mathbf{1 5 b}(260 \mathrm{mg}, 0.00108 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. The mixture was stirred for 13 h before it was filtered through a pad of Celite which was carefully rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the combined filtrates gave aldehyde $\mathbf{1 6}$ as a colorless oil which was used in the next step without further purification ($246 \mathrm{mg}, 96 \%$). $[\alpha]_{D}^{20}=-8.3\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.98(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{td}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=191.2,148.0,136.7,103.5,91.6,70.4,56.5,35.0,22.4,16.5,-0.1$; IR (film): $\widetilde{v}=2960,2901,2824,2170,1723,1682,1450,1381,1334,1251,1108,844,761,702$ cm^{-1}; HRMS (ESI): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}: 239.146505\left[M^{+}+\mathrm{Na}\right.$]; found: 239.146734.

Compound 17. A solution of $n-\operatorname{BuLi}(0.7 \mathrm{~mL}, 1.58 \mathrm{M}$ in hexanes) was added dropwise to a
 suspension of methyltriphenylphosphonium bromide (0.405 g , 0.00113 mol) in THF (3 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was allowed to reach ambient temperature. After stirring for 30 min , the orange solution was again cooled to $-78^{\circ} \mathrm{C}$ before a solution of aldehyde 16 ($246 \mathrm{mg}, 0.00103 \mathrm{~mol}$) in THF (7 mL) was slowly added. The reaction was warmed to ambient temperature over the course of 1 h before being quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc, the combined organic extracts were dried over MgSO_{4} and evaporated, and the crude product was adsorbed on Celite and purified by flash chromatography (hexanes/EtOAc, 100:1) to give product 17 as a colorless oil (243 mg, quant.). $[\alpha]_{D}^{20}=-1.2\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 6.80 (ddd, $J=17.3,10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=17.3,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{dt}, J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $133.6,133.3,129.8,113.7,104.5,90.8,70.9,56.5,35.5,23.1,19.8,0.0$; IR (film): $\widetilde{v}=3090$, 2960, 2941, 2900, 2821, 2169, 1645, 1596, 1441, 1380, 1251, 1108, 1010, 902, 843, $760 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}+\mathrm{Na}: 236.159456\left[M^{+}+\mathrm{Na}\right]$; found: 236.159647.

Compound 18. $\mathrm{K}_{2} \mathrm{CO}_{3}(426 \mathrm{mg}, 0.00309 \mathrm{~mol})$ was added in small portions over 5 min to a solution of compound 17 ($243 \mathrm{mg}, 0.00103 \mathrm{~mol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$. The
 resulting mixture was stirred for 3 h before it was filtered through a pad of Celite. The filtrate was evaporated and the crude product purified by flash chromatography (pentanes $/ \mathrm{Et}_{2} \mathrm{O}, 100: 1$) to give product 18 as a colorless oil ($139 \mathrm{mg}, 83 \%$). Upon evaporation of the solvents, the heating bath of the rotary evaporator bath was set to $20^{\circ} \mathrm{C}$ and the pressure kept at $\geq 30 \mathrm{mbar}$. $[\alpha]_{D}^{20}=-17\left(c=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.79(\mathrm{ddd}, J=17.3,10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=17.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dt}, J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{td}, J=6.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-1.71$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=133.5,133.3,129.5,113.7,82.6,73.8,70.2,56.5$, $35.5,23.0,19.8$; IR (film): $\widetilde{v}=3297,2939,2856,2824,1644,1597,1462,1441,1382,1355$, $1260,1107,920,905,638 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}+\mathrm{Na}: 164.119954\left[M^{+}+\mathrm{Na}\right]$; found: 164.120114.

Compound 19. Pinacol borane ($159 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) and $9-\mathrm{BBN}(10.4 \mathrm{mg}, 0.085 \mathrm{mmol})$ were
 added to a solution of compound $18(139 \mathrm{mg}, 0.85 \mathrm{mmol})$ in THF
 $(1.7 \mathrm{~mL})$ and the resulting mixture was stirred for 60 h at $45^{\circ} \mathrm{C}$. For work up, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc, the combined organic layers were dried over MgSO_{4} and evaporated, and the crude product purified by flash chromatography (hexanes/EtOAc, 100:1 $\rightarrow 20: 1$) to give product 19 as a pale yellow oil ($138 \mathrm{mg}, 56 \%, 64 \%$ based on recovered 18). $[\alpha]_{D}^{20}=+23\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.77$ (ddd, $\left.J=17.4,10.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.42(\mathrm{dd}, J=18.1,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{dd}, J=18.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=17.4,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{dt}, J=10.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=$ $1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.0,133.7$, $132.8,130.4,113.4,83.3,82.8,56.8,35.0,24.8$ (2C), 23.2, 19.8; the C-atom directly bonded to boron could not be detected because of line broadening caused by C,B-coupling; IR (film): $\widetilde{v}=$ 3089, 2978, 2930, 1641, 1596, 1366, 1335, 1146, 990, 970, $849 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{BC}_{17} \mathrm{H}_{29} \mathrm{O}_{3}+\mathrm{Na}$: $315.210315\left[M^{+}+\mathrm{Na}\right]$; found: 315.210193 .

Building Blocks: Preparation of Vinyl Iodide 30

Compound 26. $\mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.0489 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(13 \mathrm{mg}, 0.0495 \mathrm{mmol})$ were added to a solution of mesylate $\mathbf{2 5 a}(570 \mathrm{mg}, 1.87 \mathrm{mmol})^{10}$ in THF
 $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 5 min , a solution of aldehyde $24(231 \mathrm{mg}, 0.965 \mathrm{mmol})^{11}$ in THF (15 mL) was introduced, followed by the dropwise addition of a solution of ZnEt_{2} ($3.0 \mathrm{~mL}, 1 \mathrm{M}$ in hexane). After stirring for 30 min , the mixture was warmed to $-20^{\circ} \mathrm{C}$ over a period of 30 min and stirred overnight at that temperature. The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with tert-butyl methyl ether, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated, and the crude product (d.r. $=7.5: 1$, NMR) was purified by flash chromatography (hexanes/EtOAc, 10:1 $\rightarrow 4: 1$) to give product 26 as a colorless oil ($311 \mathrm{mg}, 72 \%$). $[\alpha]_{D}^{20}=+56.3\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $6.24(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{bs}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1,136.1,135.6,123.3$, $120.9,109.7,83.8,81.0,79.5,48.4,33.1,28.5,18.7,18.0,15.0,12.1,11.3$; IR (film): $\widetilde{v}=3358$, 2941, 2865, 2164, 1696, 1506, 1462, 1388, 1247, 1168, 1075, 1017, 996, 882, 850, $675 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{Na}: 472.321738$ [$M^{+}+\mathrm{Na}$; found: 472.322127; elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Si}$: C 69.43, H 10.53; found: C 69.54, H 10.46.

Compound 27. A solution of TBAF ($0.09 \mathrm{~mL}, 1 \mathrm{~m}$ in THF) was added to a solution of compound 26 ($226 \mathrm{mg}, 0.502 \mathrm{mmol}$) in THF (8 mL) at $0^{\circ} \mathrm{C}$. After stirring for 60 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the aqueous phase was extracted with tert-butyl methyl ether, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 2:1) gave product 27 as a colorless oil ($139 \mathrm{mg}, 94 \%$). $[\alpha]_{D}^{20}=$ $+48.3\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.23(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.62 (bs, 1H), 3.90 (dd, $J=7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.80-2.60$ $(\mathrm{m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}$, $9 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.6,135.5,123.1,120.1,85.4$, 80.5, 70.5, 47.8, 30.9, 28.0, 17.2, 14.5, 11.4; IR (film): $\widetilde{v}=3309,2977,2934,1691,1507,1366$, 1247, 1162, 1008, $752 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3}+\mathrm{Na}: 316.188315\left[M^{+}+\mathrm{Na}\right]$; found: 316.188513.
${ }^{10}$ Marshall, J. A.; Eidam, P.; Eidam, H. S. J. Org. Chem. 2006, 71, 4840.
${ }^{11}$ Cottard, M.; Kann, N.; Rein, T.; Akermark, B.; Helquist, P. Tetrahedron Lett. 1995, 36, 3115.

Compound 28. Pivaloyl chloride ($0.29 \mathrm{~mL}, 0.00235 \mathrm{~mol}$) was added dropwise to a solution of
 compound $27(460 \mathrm{mg}, 0.00157 \mathrm{~mol})$ in pyridine $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 48 h at ambient temperature before the reaction was diluted with EtOAc and quenched with aq. $\mathrm{HCl}(1 \mathrm{~m}$; saturated with NaCl). The aqueous phase was extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO_{4} and adsorbed on silica. Purification by flash chromatography (hexanes/EtOAc, 25:1) gave product 28 as a yellow oil ($416 \mathrm{mg}, 76 \%$). $[\alpha]_{D}^{20}=+17.7\left(c=1.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.27(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.63 (bs, 1H), 3.72 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.79$ (m, 1H), 2.01 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (s, 3H), 1.71 $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $177.3,156.1,136.5,132.8,124.6,85.3,80.8,79.5,69.7,48.3,39.1,29.5,28.5,27.3,17.6,15.1$, 12.6; IR (film): $\widetilde{v}=3314,2976,2933,1712$ (br), 1513, 1480, 1455, 1392, 1366, 1278, 1248, 1153, 1060, 1010, 969, 936, $874 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4}+\mathrm{Na}: 400.245951$ $\left[M^{+}+\mathrm{Na}\right]$; found: 400.245829; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4}$: C 69.99, H 9.34; found: C 69.95, H 9.60.

Compound 29. A solution of compound $28(75.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF (1.7 mL) was added
 dropwise to a suspension of Schwartz reagent ($61 \mathrm{mg}, 0.24 \mathrm{mmol}$) in THF (1 mL). After stirring for 1 h in the dark, the mixture was cooled to $0^{\circ} \mathrm{C}$ before a solution of $\mathrm{I}_{2}(76 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added dropwise until a pale yellow color persisted. After stirring for 5 min , the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and diluted with tert-butyl methyl ether, and stirring was continued for another 10 min . The aqueous phase was then extracted with tert-butyl methyl ether, the combined organic layers were dried over MgSO_{4} and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 20:1) to give product 29 as a yellow oil (85 mg , $85 \%) \cdot[\alpha]_{D}^{20}=+3\left(c=0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.38(\mathrm{dd}, J=14.4,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=14.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{brs}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.1$, $155.9,147.5,136.2,132.8,124.4,120.2,81.1,75.9,48.2,43.3,38.9,28.4,27.2,16.3,15.0,12.4 ;$ one carbon signal is missing due to overlapping; IR (film): $\widetilde{v}=3380,2975,1717$ (br), 1509, 1479, 1366, 1279, 1161, $963 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{INO}_{4}+\mathrm{Na}: 528.157591$ $\left[M^{+}+\mathrm{Na}\right]$; found: 528.158125; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{4}$: C 52.37, H 6.87; found: C 52.28, H 7.18.

Compound 30. A solution of DIBAl-H ($0.62 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes) was added dropwise to a solution of compound $29(121 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h, the reaction was quenched with EtOAc and warmed to ambient temperature before a saturated aqueous solution of Rochelle's salt was introduced and stirring continued at $45^{\circ} \mathrm{C}$ for 30 min . The
two phases were separated, the aqueous layer was extracted with EtOAc, the combined organic extracts dried over MgSO_{4} and evaporated, and the crude product purified by flash chromatography (hexanes/EtOAc, $10: 1 \rightarrow 4: 1$) to give product 30 as
 a colorless oil (94 mg, 87\%). $[\alpha]_{D}^{20}=+59\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.53$ (dd, $J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.20-6.10 (m, 3H), 4.61-4.57 (brs, 1H), $3.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.75-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=156.2,149.2,137.4,136.3,123.4,120.5,81.4,75.9,48.4,44.9,28.5,16.4,15.0$, 11.9; one carbon signal is missing due to overlapping; IR (film): $\widetilde{v}=3367,2976,1694$ (br), 1512, 1366, 1249, 1168, $1008 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{INO}_{3}+\mathrm{Na}: 444.1010$ [$\left.M^{+}+\mathrm{Na}\right]$; found: 444.1006.

Optimized Synthesis of Stannane 36

Compound 35. $\mathrm{MnO}_{2}(4.9 \mathrm{~g}, 56 \mathrm{mmol})$ was added to a solution of compound $33(774 \mathrm{mg}, 2.14$ $\mathrm{mmol})^{12}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the resulting mixture stirred for 20 h . After filtration through a pad of Celite and evaporation of the filtrate, aldehyde 34 was obtained in sufficient quality for immediate use in the subsequent allylation ($730 \mathrm{mg}, 95 \%$ crude yield). The recorded spectroscopic data were identical to those reported in literature. ${ }^{13}$

A solution of allylmagnesium bromide ($2.85 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added dropwise over 30 min to a solution of $(-)-\mathrm{Ipc}_{2} \mathrm{BOMe}(930 \mathrm{mg}, 2.94 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ before it was allowed to reach ambient temperature over the course of 1 h . The precipitated salts were filtered off under Ar through a pad of dried Celite and the filtrate was cooled to $-78^{\circ} \mathrm{C}$. A solution of crude aldehyde $34(730 \mathrm{mg}, 2.03 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise over 30 min and the resulting mixture stirred at that temperature for 2 h . The mixture was then allowed to reach ambient temperature over the course of 1 h before it was quenched with a mixture of $\mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{~mL}, 30 \% \mathrm{w} / \mathrm{w})$ and aq. $\mathrm{NaOH}(3.6 \mathrm{~mL}, 3 \mathrm{~m})$. The mixture was refluxed for 1 h and then stirred at ambient temperature for 15 h before being diluted with EtOAc and extracted with brine. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 20:1) to give product 35 as a colorless oil ($614 \mathrm{mg}, 75 \%$, ee $=93 \%$). $[\alpha]_{D}^{20}=-12\left(c=0.23, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.80(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$, $1.47(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.5,141.6$, 134.4, 117.8, 66.5, 41.9, 29.1, 27.3, 19.6, 13.6, 9.1; IR (film): $\widetilde{v}=3321,2956,2923,2871,2853$,

[^1]1641, 1463, 1376, 1339, 1292, 1070, 1018, 998, 911, 864, $663 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{OSn}+\mathrm{Na}: 425.183615\left[M^{+}+\mathrm{Na}\right]$; found: 425.183295; elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{OSn}: \mathrm{C} 56.88$, H 9.55; found: C 56.68, H 9.56.

Compound 36. A solution of compound $35(530 \mathrm{mg}, 1.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise over 15 min to a mixture of Meerwein salt ($260 \mathrm{mg}, 1.75 \mathrm{mmol}$)
 and proton sponge $(434 \mathrm{mg}, 2.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After warming to ambient temperature within 1 h , the suspension was stirred for 14 h . For work up, the mixture was filtered through a pad of Celite, the filtrate was diluted with EtOAc and extracted with brine, the organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 20:1) to give product 36 as a colorless oil (481 mg, 88\%). $[\alpha]_{D}^{20}=-23.6$ (c $=1.5$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}$, $2 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~m}$, $6 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.5,140.5,134.4,116.3$, $75.1,55.5,28.8,26.9,19.4,13.3,13.3,7.2$; IR (film): $\widetilde{v}=2956,2924,1641,1463,1098 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{OSn}+\mathrm{Na}$: 439.199261 [$M^{+}+\mathrm{Na}$]; found: 439.199124.

Building Blocks: ‘Second Generation’ Synthesis of Compound 43

Compound 40. A solution of DIBAl-H ($5.5 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise at $-78^{\circ} \mathrm{C}$ to a solution of compound $37(1.2 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the resulting mixture was stirred for 30 min at that temperature before the reaction was quenched with EtOAc (6 mL).

In a separated flask, phosphonate $44(1.32 \mathrm{~mL}, 6.0 \mathrm{mmol})$ was added dropwise to a solution of LiHMDS ($1.1 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (25 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 20 min before the solution containing the crude aldehyde 38 was slowly introduced. The resulting mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirred for 17 h . For work up, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was stirred at $40^{\circ} \mathrm{C}$, an aq. solution of Rochelle's salt (1 M) was added and stirring continued for 1 h until a clean separation of the phases was reached. The aqueous layer was extracted with EtOAc, the combined organic extracts were washed with brine, dried over MgSO_{4} and evaporated to give the crude product as a 2.8:1 (Z / E mixture) which was used in the next step without further purification.

AIBN ($164 \mathrm{mg}, 1 \mathrm{mmol}$) and diphenyldisulfide ($546 \mathrm{mg}, 2.5 \mathrm{mmol}$) were successively added to a solution of the crude enoate $45(5 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$ and the resulting mixture was stirred at reflux for 96 h until GC showed complete isomerization to the desired E-configurated isomer 40. For work up, the mixture was evaporated and the residue purified by flash chromatography to give product 40 as a colorless oil $(1.12 \mathrm{~g}, 77 \%$ over 3 steps $) .[\alpha]_{D}^{20}=+8\left(c=2.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.24$ (ddd, $\left.J=8.7,2.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.87(\mathrm{ddd}, J=8.7,2.8,2.1$
$\mathrm{Hz}, 2 \mathrm{H}), 6.56(\mathrm{dq}, J=9.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.35$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=168.7,160.0,145.0,131.4,129.9,128.8$, $114.4,74.9,73.4,61.1,55.9,34.6,17.1,14.8,13.1$; IR (film): $\widetilde{v}=2961,2932,2856,1708,1650$, 1613, 1586, 1513, 1463, 1366, 1301, 1246, 1172, 1146, 1085, 1035, 820, $749 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}+\mathrm{Na}: 315.1566\left[M^{+}+\mathrm{Na}\right]$; found: 315.1567.

Compound 40b. DDQ ($85 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added in one portion to a solution of compound $40(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.45 \mathrm{~mL})$. After

40b stirring for 1 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and successively washed with aq. sat. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$ and brine, the organic layer was dried over MgSO_{4} and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, $8: 1 \rightarrow 4: 1$) to give product $\mathbf{4 0 b}$ as a colorless oil ($49 \mathrm{mg}, 83 \%$). $[\alpha]_{D}^{20}=-25.0\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.55(\mathrm{dd}, J=9.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{br}$, $1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.7$, 143.3, 128.9, 66.8, 60.2, 35.9, 15.7, 13.9, 12.4; IR (film): $\widetilde{v}=3440,2962,2932,2874,1707$, 1649, 1448, 1368, 1259, 1128, 1032, $748 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}+\mathrm{H}$: $173.1178\left[M^{+}+\mathrm{H}\right]$; found: 173.1176 .

Compound 43. Dess-Martin periodinane ($125 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added in one portion to a
 solution of compound $\mathbf{4 0 b}(46 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$. After stirring for 30 min , the reaction was quenched with aq. sat. NaHCO_{3} and the mixture diluted with hexanes before it was filtered through a pad of Celite. The aqueous phase was extracted with hexanes, and the combined organic phases were washed with brine, dried over MgSO_{4} and evaporated. The residue was triturated with hexanes, insoluble residues were filtered off through a pad of Celite, and the filtrate was evaporated to give crude 41 which was immediately used in the next operation.

A solution of crude 41 thus formed and $\mathrm{CHI}_{3}(173 \mathrm{mg}, 0.440 \mathrm{mmol})$ in 1,4-dioxane (3.6 mL) was added dropwise to a suspension of $\mathrm{CrCl}_{2} \cdot 1.8 \mathrm{THF}(278 \mathrm{mg}, 1.1 \mathrm{mmol})$ in THF (0.7 mL). After stirring for $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was introduced, the mixture was concentrated under vacuum, the aqueous phase was repeatedly extracted with tert-butyl methyl ether, the combined organic extracts were washed with brine, dried over MgSO_{4} and evaporated, and the residue purified by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}, 1: 0 \rightarrow 25: 1$) to give product 43 as a colorless oil $(33 \mathrm{mg}, 51 \%$, containing $<15 \% 42$). $[\alpha]_{D}^{20}=+30\left(c=0.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ (major product 43) $=6.52-6.48(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=14.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=14.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ (major product) $=168.1,148.3$, 142.4, 128.5, 75.5, 61.0, 40.1, 19.5, 14.4, 12.7; IR (film): $\widetilde{v}=2973,1711,1447,1367,1248,1179$, 1117, 947, 748, $720,682 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{I}+\mathrm{Na}: 317.00109\left[\mathrm{M}^{+}+\mathrm{Na}\right]$, found: 317.00090.

~90\% (+ 10\% of conjugated isomer)

~90\% (+ 10\% of conjugated isomer)

Fragment Coupling Reactions and Formation of Macrocycle 51

Compound 46. Compound 36 ($358 \mathrm{mg}, 0.86 \mathrm{mmol}$), compound 43 (containing $\sim 10 \%$ of $\mathbf{4 2}$, 221
 $\mathrm{mg}, 0.75 \mathrm{mmol})$, CuTC ($179 \mathrm{mg}, 0.94 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($38 \mathrm{mg}, 0.033 \mathrm{mmol}$) were successively added to a solution of thoroughly dried $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{NBu}_{4}(432 \mathrm{mg}, 0.94 \mathrm{mmol})$ in degassed DMF (8.4 mL). The resulting brown mixture was stirred for 1 h before it was diluted with $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}$, and filtered through a pad of Celite. The organic phase was washed with brine before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 20:1) to give product 46 as a colorless oil ($175 \mathrm{mg}, 80 \%$, containing about 10% of other isomers which cannot be separated at this stage). $[\alpha]_{D}^{20}=-25.8\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.60(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H})$, $5.57(\mathrm{dd}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.4,144.8$, $136.5,134.6,133.5,131.5$ (2x), 126.8, 117.0, 76.9, 60.6, 56.1, 40.1, 36.4, 20.4, 14.4, 13.1, 12.6; IR (film): $\widetilde{v}=2977,2929,2873,1711,1643,1448,1367,1263,1240,1098,966,750 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}+\mathrm{Na}$: $315.193066\left[M^{+}+\mathrm{Na}\right.$]; found: 315.192829.

Compound 47. A solution of $\mathrm{LiOH}\left(1.5 \mathrm{~mL}, 1 \mathrm{~m}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added to a solution of compound 46 ($66 \mathrm{mg}, 0.226 \mathrm{mmol}$, about 90% of the main isomer) in
 $\mathrm{MeOH}(1 \mathrm{~mL})$ and THF $(1 \mathrm{~mL})$ and the resulting mixture was stirred for 24 h . For work up, the mixture was acidified to a $\mathrm{pH} \approx 3$ with aq. $\mathrm{HCl}(0.5 \mathrm{~m})$ and extracted with EtOAc. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, $4: 1$) to give isomerically and analytically pure product 47 as a colorless oil ($50 \mathrm{mg}, 85 \%$). $[\alpha]_{D}^{20}=$ $-42.7\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.75(\mathrm{dd}, J=9.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08-4.99 (m, 2H), 4.10-4.00 (m, 1H), 3.38-3.23 (m, 1H), 3.31 (s, 3H), 2.40-2.30 (m, 1H), 2.27$2.18(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=174.3,148.3,137.2,135.5,134.4,132.5,131.8,126.6,117.2$, $77.5,56.4,40.7,37.3,20.7,13.6,12.7$; IR (film): $\widetilde{v}=2964,2927,1683,1640,1418,1274,1094$, $963 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}-\mathrm{H}: 263.165268$ [M-H]; found: 263.165497.

Compound 48. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(3 \mathrm{mg}, 0.0039 \mathrm{mmol})$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(12 \mathrm{mg}, 0.039 \mathrm{mmol})$ were added to a solution of compounds $19(9 \mathrm{mg}, 0.031 \mathrm{mmol})$ and $30(11 \mathrm{mg}, 0.026 \mathrm{mmol})$ in DMF $(0.6 \mathrm{~mL})$. The mixture was vigorously stirred at $40^{\circ} \mathrm{C}$ for 3 h , before it was diluted with EtOAc and quenched with ice water. The aqueous phase was repeatedly extracted with EtOAc, the combined organic extracts were washed with brine, dried over MgSO_{4} and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 4:1) to give product 48 as a colorless
oil ($8.0 \mathrm{mg}, 66 \%) .[\alpha]_{D}^{20}=+13\left(c=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.69(\mathrm{dd}, J$ $=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 4 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{brs}, 1 \mathrm{H}), 3.62$
 $(\mathrm{m}, 3 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.14$ $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}$, $9 \mathrm{H}), 0.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=135.8, ~ 132.9$, 132.0, 131.6, 130.2, 129.8 (2x), 122.1, 119.5, 112.3, 80.9, 80.4, 55.1, 47.3, 40.4, 34.8, 27.3, 22.4, 18.7, 16.1, 13.8, 10.7; IR (film): $\widetilde{v}=3415,3348,3088,2974,2929,2871,2822,1700,1659$, 1595, 1512, 1453, 1390, 1366, 1250, 1170, 1099, 991, 935, 868, $802 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{NO}_{4}+\mathrm{Na}: 482.324190\left[M^{+}+\mathrm{Na}\right]$; found: 482.324076 .

Compound 49. 2,4,6-Trichlorobenzoylchloride ($14 \mu \mathrm{~L}, 0.088 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(10 \mu \mathrm{~L}, 0.066 \mathrm{mmol})$,
 and DMAP ($3 \mathrm{mg}, 0.022 \mathrm{mmol}$) were added to a solution of compounds 47 (13 $\mathrm{mg}, 0.044 \mathrm{mmol})$ and $48(13 \mathrm{mg}, 0.029$ $\mathrm{mmol})$ in toluene (1 mL) and the resulting mixture was stirred at ambient temperature for 4 days. The crude mixture was adsorbed on silica and the product purified by flash chromatography (hexanes/EtOAc, 4:1) to give compound 49 as a yellow oil ($15 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.77(\mathrm{dd}, J=17.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=9.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 4 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.13(\mathrm{~m}, 2 \mathrm{H})$, 5.10-4.97 (m, 4H), $4.70(\mathrm{bs}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.25-3.19 (m, 1H), $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 3 \mathrm{H}), 1.83$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.66-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=167.4,156.1,145.1,136.8,136.7,136.3,135.2,134.3,134.1,133.7,133.1,132.9$, $132.7,131.9,131.8,131.0,130.6,127.1,124.4,120.3,116.8,113.4,83.0,81.6,77.1(2 \mathrm{x}), 56.1$, $56.0,48.4,40.4,39.9,36.6,36.0,28.5,23.6,20.5,19.9,17.0,15.0,13.2,12.7,12.6$; IR (film): \widetilde{v} $=3355,3073,2974,2929,2874,2817,1713,1644,1585,1508,1450,1389,1366,1262,1168$, 1099, 990, $968 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{44} \mathrm{H}_{67} \mathrm{NO}_{6}+\mathrm{Na}: 728.486059\left[M^{+}+\mathrm{Na}\right]$; found: 728.485578.

Compound 51. Complex $50(0.6 \mathrm{mg}, 0.00071 \mathrm{mmol})$ was added to a solution of compound 49 (5 $\mathrm{mg}, 0.007 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resulting solution was stirred at ambient temperature for 24 h . At that point, a second batch of $50(0.6 \mathrm{mg}, 0.00071 \mathrm{mmol})$ was introduced and stirring continued for additional 24 h . The reaction was then quenched with ethyl vinyl ether, all volatile materials were evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 4:1) to give product 51 as a yellow oil ($4.8 \mathrm{mg}, 96 \%$). $[\alpha]_{D}^{20}=+14.0(c=0.05$,
$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.57(\mathrm{dq}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{dq}, J=11.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dq}, J=11.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=14.8,10.5 \mathrm{~Hz}$, 1H), 5.97 (dd, $J=15.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$
 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (ddd, $J=15.5$, $10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=15.4,8.9$
$\mathrm{Hz}, 1 \mathrm{H}), 5.38$ (dd, $J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (dd, $J=14.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (dd, J
$=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (brs,
$1 \mathrm{H}), 4.11$ (ddd, $J=10.0,9.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.26$ (ddd, $J=10.4,8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{tq}, J=9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=13.7,10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dq}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ $(\mathrm{s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58$ (ddt, J $=13.9,9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{dddd}, J=14.0,11.2,5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=167.6,156.2,145.6$, $137.2,137.1,136.3,133.8,133.7,133.3,133.1,132.4,132.3,132.1,131.2,129.8,128.8,126.0$, $125.7,125.4,120.3,83.3,79.8,77.9,77.0,56.5,55.9,48.4,41.0,41.0,38.3,35.3,28.5,23.2$, $21.5,20.8,16.8,15.1,13.2,12.1,12.1$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{NO}_{6}+\mathrm{Na}: 700.4552$ [$\left.M^{+}+\mathrm{Na}\right]$; found: 700.4546.

$!$	$\stackrel{\square}{\circ}$	\%	$\stackrel{\square}{\circ}$	¢J®®	\bigcirc	F	न	\%	\%	ヲ\%8
$\stackrel{\oplus}{\square}$	-	-	न		\&	$\stackrel{\circ}{\circ}$		$\dot{¢}$	$\stackrel{\circ}{\sim}$	$\pm{ }_{\text {¢ }}$
		111111		V						1/1

(plus ca.10-15\% of other isomers)

'First Generation’ Total Synthesis of Iejimalide B

Compound 52. TMSOTf ($50 \mu \mathrm{~L}, 0.279 \mathrm{mmol}$) was added dropwise to a solution of 2,6 -lutidine $(38 \mu \mathrm{~L}, 0.325 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After
 stirring for 5 min , the resulting solution was transferred via syringe to a solution of compound 29 ($47 \mathrm{mg}, 0.093 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 3 h before the reaction was quenched with aq. sat. NaHCO_{3}, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were washed with aq. $\mathrm{CsF}(0.5 \mathrm{M})$, and the fluoride solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated.

Compound 57 ($30 \mathrm{mg}, 0.12 \mathrm{mmol}$), N-methylmorpholine ($30 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) and HOBt (15 mg , 0.11 mmol) were successively added to a solution of the crude amine thus formed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ before EDC ($25 \mathrm{mg}, 0.13 \mathrm{mmol}$) was introduced and stirring continued overnight at ambient temperature. The mixture was evaporated and the residue partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The combined organic layers were washed with aq. $\mathrm{HCl}(0.1 \mathrm{M})$ and brine, before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Flash chromatography of the residue (hexanes/EtOAc, 55:45) afforded product 52 as a colorless oil (50 $\mathrm{mg}, 85 \%) .[\alpha]_{D}^{20}=+11.8\left(c=1.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.60-$ $6.50(\mathrm{bs}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=14.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.08(\mathrm{~m}, 3 \mathrm{H}), 4.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-$ $4.38(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.53(\mathrm{~m}$, $1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=177.7,170.2,161.6,148.5,136.0,134.5,124.8$, $122.0,81.8,76.6,63.5,47.8,44.0,39.6,27.7,26.3,18.8,16.9,15.6,13.0,-5.1$; IR (film): $\widetilde{v}=$ 3303, 2957, 2929, 2857, 1727, 1650, 1534, 1383, 1245, 1150, $836 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaSiI}$: $657.219121\left[M^{+}+\mathrm{Na}\right.$]; found: 657.219663 .

Compound 53. A solution of $\mathrm{LiBEt}_{3} \mathrm{H}(236 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF) was added dropwise to a solution of compound $52(50 \mathrm{mg}, 0.0788 \mathrm{mmol})$ in THF (2 mL) at
 $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h before additional $\mathrm{LiBEt}_{3} \mathrm{H}(39 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF) was introduced. After 30 min , a third portion of $\mathrm{LiBEt}_{3} \mathrm{H}(39 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF) was added and stirring continued for another 30 min . At this point the solution was neutralized with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with tert-butyl methyl ether, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1:1) to give product 53 as a colorless oil ($30 \mathrm{mg}, 70 \%$). $[\alpha]_{D}^{20}=+29.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.63-6.48(\mathrm{~m}, 3 \mathrm{H}), 6.20-6.10(\mathrm{~m}, 3 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=$
$9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dt}, J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-$ $2.35(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 12 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) .0 .08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.2,161.6,149.6,138.5,135.3,123.5,122.3,81.7,76.4,63.5,53.4$, $47.8,45.2,26.3,18.8,16.8,15.5,12.4,-5.0$; IR (film): $\widetilde{v}=3302,2928,2857,1650,1530,1385$, 1255, 1107, 953, 834, $710 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ISi}+\mathrm{Na}$: 573.161605 [$\left.M^{+}+\mathrm{Na}\right]$; found: 573.161674.

Compound 54. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(4.0 \mathrm{mg}, 0.0054 \mathrm{mmol})$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(17 \mathrm{mg}, 0.054 \mathrm{mmol})$
 were added to a solution of compounds 19 ($12 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $53(20 \mathrm{mg}, 0.036 \mathrm{mmol})$ in DMF $(0.8 \mathrm{~mL})$. The mixture was vigorously stirred at $20^{\circ} \mathrm{C}$ for 3 h before it was diluted with tert-butyl methyl ether and quenched with ice water. The aqueous phase was extracted with tert-butyl methyl ether, and the combined organic extracts were repeatedly washed with brine before they were dried over MgSO_{4} and evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, $5: 1 \rightarrow 1: 1$) furnished product 54 as a colorless oil $(15 \mathrm{mg}, 70 \%) .[\alpha]_{D}^{20}=+6.3(c$ $\left.=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{ddd}, J=17.3,10.8,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61-6.59(\mathrm{brm}, 2 \mathrm{H}), 6.20-6.13(\mathrm{~m}, 4 \mathrm{H}), 5.63(\mathrm{dd}, J=12.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=14.4$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-$ $4.44(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ $(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.81$ $(\mathrm{s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.115$ (s, 6 H) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.2,160.6,137.5,135.9,133.5,133.4,132.6$, $132.4,132.0,131.0,130.1,122.8,121.8,113.0,81.5,80.9,75.9,62.2,55.9,52.5,47.0,40.9$, $35.2,25.5,22.9,19.5,17.7,16.7,14.6,11.4,-5.8,-5.9$; IR (film): $\widetilde{v}=3286,2929,2859,1652$, 1548, 1462, 1386, 1257, 1106, 990, 837, $778 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}: 611.385351$ [$M^{+}+\mathrm{Na}$]; found: 611.385069.

Compound 55. DCC ($5.3 \mathrm{mg}, 0.0255 \mathrm{mmol}$) and 4-pyrrolidinyl-pyridine ($1.2 \mathrm{mg}, 0.0076 \mathrm{mmol}$)
 were added in portions to a solution of acid $47(7.5 \mathrm{mg}$, $0.0255 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1$ mL) at $0^{\circ} \mathrm{C}$. After stirring for 10 min , the mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of compound $54(15 \mathrm{mg}, 0.0255 \mathrm{mmol})$ in THF $(0.1 \mathrm{~mL})$ was added dropwise. The mixture was allowed to reach ambient temperature and was stirred for 17 h before being filtered through a pad of Celite. Evaporation of the filtrate followed by purification of the residue by flash chromatography (hexanes/EtOAc, 20:1 $\rightarrow 1: 1$) provided
product 55 as a pale yellow oil ($18 \mathrm{mg}, 85 \%$). $[\alpha]_{D}^{20}=+10\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.76$ (ddd, $\left.J=16.2,11.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.56(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.51-6.48 (brm, 2H), 6.23 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15-6.06 (m, 4H), 5.77 (ddt, $J=17.4,10.2,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61-5.57(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{td}, J=6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.6,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=12.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.76$ (bs, 6H), 1.65-1.60 (m, 1H), 1.52-1.46 (m, 1H), 1.15 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.8$ 167.4, 161.1, $145.1,136.8,136.2,135.3,135.2,134.9,134.1,133.7,133.1,132.9,132.7,131.9,131.9,131.0$, 130.7, 127.1, 124.3, 121.8, 116.8, 113.4, 83.0, 81.6, 77.1, 63.1, 56.1, 56.0, 53.5, 47.4, 40.4, 39.9, 36.7, 36.0, 25.9, 23.6, 20.5, 19.8, 18.4, 17.0, 15.2, 13.2, 12.8, 12.6, -5.4, -5.5; IR (film): $\widetilde{v}=$ 3294, 2926, 2855, 1733, 1653 (br), 1547, 1462, 1378, $1259 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}$: $857.547735\left[M^{+}+\mathrm{Na}\right]$; found: 857.547048.

Compound 56. Complex $50(2.7 \mathrm{mg}, 0.00324 \mathrm{mmol})$ was added to a solution of compound 55
 $(18 \mathrm{mg}, 0.0216 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(22 \mathrm{~mL})$ and the resulting mixture was stirred at ambient temperature for 48 h . The reaction was quenched with ethyl vinyl ether $(20 \mu \mathrm{~L})$. After stirring for 10 min , all volatile materials were evaporated while keeping the temperature of the bath at $20^{\circ} \mathrm{C}$. The residue was adsorbed on Celite and purified by flash chromatography (hexanes/EtOAc, $3: 1 \rightarrow 1.5: 1$) to give product 56 as a yellow oil (10 mg , $69 \%)$. $[\alpha]_{D}^{20}=+4\left(c=0.54, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=$ $10.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.48(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=14.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=15.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J$ $=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{ddd}, J=15.5,10.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.35$ $(\mathrm{m}, 2 \mathrm{H}), 5.19-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.41(\mathrm{~m}$, $1 \mathrm{H}), 4.12$ (ddd, $J=9.8,9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=9.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.62$ (dd, $J=9.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.64$ (brd, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dt}, J=12.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{brs}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s} 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.06$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.8,167.5,161.1,145.6,137.1,136.2,135.8,134.3,133.8,133.8,133.3,132.4$, $132.3,132.0,131.2,129.8,128.8,125.9,125.5,125.4,121.8,83.2,79.8,77.0,63.0,56.5,55.9$, $53.8,47.4,41.0,40.9,38.3,35.3,25.9,23.2,21.5,20.8,18.4,16.8,15.2,13.2,12.1,12.1$, $-5.4,-5.5$; IR (film): $\widetilde{v}=3300,2926,2856,1651$ (br), 1533, 1462, 1385, 1257, 1216, 1105, 989, 964, 837, 778, $744 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{47} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}: 829.515918$ [$\left.M^{+}+\mathrm{Na}\right]$; found: 829.515750 .

Iejimalide B (2). A solution of TBAF ($6.5 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF) was added dropwise to a solution of
 compound 56 ($5 \mathrm{mg}, 0.0062 \mathrm{mmol}$) in THF $(62 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. After stirring at that temperature for 15 min , hexane $(100 \mu \mathrm{~L})$ was added and the mixture was adsorbed on silica. Purification by flash chromatography (hexanes/EtOAc, 2:1 $\rightarrow 0: 1$) furnished product 2 as a colorless oil ($4 \mathrm{mg}, 80 \%$). The spectroscopic data are in full agreement to those published for natural 2. ${ }^{14}[\alpha]_{D}^{20}=-16\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{Lit}^{14 \mathrm{a}}:-17.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dq}, J=$ $10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dq}, J=11.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=14.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=15.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.52 (ddd, $J=15.1,10.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=$ $14.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=14.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{ddd}, J=$ $11.3,8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=8.6,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dt}, J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.7,167.5,161.8,145.6,137.2,136.1,135.5,134.4$, 133.7, 133.7, 133.3, 132.4, 132.3, 132.1, 131.2, 129.8, 128.8, 126.0, 125.3, 125.1, 121.2, 83.1, $80.0,77.1,62.8,56.5,55.9,52.9,47.1,41.0,40.8,38.2,35.3,23.3,21.5,20.8,16.8,15.2,13.2$, 12.3, 12.1; IR (film): $\widetilde{v}=3329,2925,2856,1654$ (br), 1541, 1453, 1383, 1260, 1096, 965, 800, $698 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}$: $715.429344\left[M^{+}+\mathrm{Na}\right]$; found: 715.429268 .

[^2]Iejimalide D (4). $\mathrm{SO}_{3} \cdot \mathrm{Py}(17 \mathrm{mg}, 0.108 \mathrm{mmol})$ and $\mathrm{DMF}(50 \mu \mathrm{~L})$ were successively added to a solution of $2(1.5 \mathrm{mg}, 0.0022 \mathrm{mmol})$ in pyridine $(100 \mu \mathrm{~L})$ and the resulting mixture was stirred for 1 h . All volatiles were evaporated under a flow of argon, and the residue was dissolved in

EtOAc. Filtration through Celite, evaporation of the solvent, and purification of the residue by HPLC $\left(\mathrm{CH}_{3} \mathrm{CN}+0.1 \%\right.$ trifluoroacetic acid) gave, after lyophilization of the productcontaining fractions, compound 4 as a white solid ($0.7 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=8.16(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.50(\mathrm{~m}$, $1 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.68 (t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=10.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 2 \mathrm{H})$, $3.26(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 2 \mathrm{H})$, 2.30-2.24 (m, 1H), 1.88-1.86 (m, 1H), $1.81(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$: 771.389596 [$M^{-}-\mathrm{Na}$]; found: 771.389627.

$$
\begin{aligned}
& \tau \cdot G- \\
& \varepsilon t \cdot G_{-}-
\end{aligned}
$$

$$
66^{\prime} \mathrm{s} \varepsilon
$$

$$
\begin{aligned}
& \text { SG'IV } \\
& \angle t^{\prime} \angle t
\end{aligned}
$$

$$
\begin{aligned}
& \angle t^{\prime} \angle t \\
& \mathrm{GZ} \cdot \mathrm{\varepsilon G} \\
& \varepsilon t^{\prime} \mathrm{\varepsilon G} \\
& \mathrm{ZG} \cdot \varepsilon \mathrm{G}
\end{aligned}
$$

80° ع9
$\angle 9^{\circ} \cdot 28$
80.28

9I•T9I

T8.69T

ZI:LL

8G' $78=$
ع०.

50.96

カI'โ9I
エナ' $29 T$
LL.69I
LL'69I

ppm

Total Synthesis of Iejimalide B - 'Teoc-Strategy’

Compound 58. TFA ($10 \mathrm{~mL}, 130 \mathrm{mmol}$)) was added dropwise to a solution of compound 23
 ($799 \mathrm{mg}, 2.97 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 1 h before it was evaporated and the crude amine thus formed was dried under high vacuum for 1 h .
$\mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 20 \mathrm{mmol})$ and 4-nitrophenyl-2-trimethylsilylethyl-carbonate ($1.7 \mathrm{~g}, 6 \mathrm{mmol}$) were added to a solution of the crude amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$. The resulting yellow solution was stirred for 24 h before it was extracted with aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to remove the released nitrophenol. The mixture was washed with brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the crude product purified by flash chromatography (hexanes/EtOAc, 4:1) to give product 58 as a pale yellow oil ($887 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.43(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{bs}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.2,157.1,144.0,133.6,126.8,120.3,63.5,52.0,48.5,18.0,15.6,13.0,-1.5$; IR (film): $\widetilde{v}=3348,2952,1695,1523,1434,1244,1110,1059,941,834,751 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}+\mathrm{Na}: 336.160159$ [$M^{+}+\mathrm{Na}$]; found: 336.160418 ; elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}$: C 57.47, H 8.68; found: C 57.40, H 8.72.

Compound 59. DIBAl-H ($6.5 \mathrm{~mL}, 1 \mathrm{M}$ in hexane) was added dropwise to a solution of
 compound 58 ($770 \mathrm{mg}, 2.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h at that temperature, the reaction was quenched with EtOAc (2 mL) and the mixture was allowed to reach ambient temperature at which point sat. aq. Rochelle salt solution (10 mL) was introduced. After stirring at $40^{\circ} \mathrm{C}$ for 1 h , the mixture was diluted with EtOAc and extracted with brine, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 2:1) to give product 59 as a white solid ($671 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.25(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80$ (bs, $1 \mathrm{H}), 4.14(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.63(\mathrm{~s}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=157.0$, 137.7, 135.2, 121.1, 120.3, 68.8, 63.3, 48.8, 18.0, 14.9, 14.2, -1.5; IR (film): $\widetilde{v}=3331,2954$, 2914, 1689, 1531, 1346, 1246, 1130, 1063, 1001, 832, 690, $664 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{Na}$: $308.165245\left[M^{+}+\mathrm{Na}\right]$; found: 308.165153; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}$: C 58.91, H 9.53; found: C 58.84, H 9.57.

Compound 61. $\mathrm{MnO}_{2}(8.5 \mathrm{~g}, 97 \mathrm{mmol})$ was added to a solution of compound 59 ($827 \mathrm{mg}, 2.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the resulting mixture was stirred for 1 h . After filtration through a pad of Celite and evaporation of the filtrate, aldehyde $\mathbf{6 0}$ was obtained in quantitative yield and used directly in the next step. Characteristic data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=9.45(\mathrm{~s}, 1 \mathrm{H})$,
$7.13(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{bs}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.1(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=196.7,158.4,148.4,145.4,139.1,121.4,65.0,50.0,19.5,17.3,10.9$, 0.0; HRMS (ESI): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{H}: 284.168201$ [$M^{+}+\mathrm{H}$]; found: 284.168231.

$\mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 0.147 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(40 \mathrm{mg}, 0.152$ $\mathrm{mmol})$ were added to a solution of compound $25(1.32 \mathrm{~g}$, $4.3 \mathrm{mmol})$ in THF (30 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 5 min , a solution of the crude aldehyde $\mathbf{6 0}$ in THF (10 mL) was introduced followed by the dropwise addition of a solution of $\mathrm{ZnEt}_{2}(8.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes). The resulting mixture was stirred at that temperature for 30 min before it was warmed to $-20^{\circ} \mathrm{C}$ over a period of 1 h and stirring was continued overnight. The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the crude material (d.r. $=7.5: 1, \mathrm{NMR}$) was purified by flash chromatography (hexanes/EtOAc, 10:1 $\rightarrow 4: 1$) to give product $61(\mathrm{dr}>15: 1)$ as a colorless oil $(1.02 \mathrm{~g}, 71 \%$, ee $=$ $96.8 \%)$. $[\alpha]_{D}^{20}=+47.5\left(c=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.26(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=7.0,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, $1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 21 \mathrm{H}), 0.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$: $\delta=157.0,136.9,135.8,123.1,121.0,110.3,83.7,81.0,63.3,48.8,33.2,18.8$, $18.2,18.1,15.0,12.2,11.5,-1.4$; IR (film): $\widetilde{v}=3344,2943,2865,2160,1701,1515,1462$, 1382, 1249, 1124, 1060, 1016, 858, 835, $675 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{51} \mathrm{NO}_{3} \mathrm{Si}_{2}+\mathrm{Na}$: 516.329970 [$\left.M^{+}+\mathrm{Na}\right]$; found: 516.330321 ; elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{51} \mathrm{NO}_{3} \mathrm{Si}_{2}$: C 65.66, H 10.41; found: C $65.76, \mathrm{H} 10.34$.

Compound 61b. A solution of TBAF ($1.2 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added in 4 portions over 2 h to a solution of compound $61(501 \mathrm{mg}, 1.01 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at

61b $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at that temperature for 30 min . The reaction was then quenched with $\mathrm{H}_{2} \mathrm{O}$, the aqueous phase extracted with EtOAc, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $4: 1$) to give product $\mathbf{6 1 b}$ as a colorless oil ($304 \mathrm{mg}, 89 \%$). $[\alpha]_{D}^{20}=+49.3\left(c=1.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.25(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=158.4,138.2,137.6,124.9,122.2,87.7,82.5,72.3,64.7,50.2,33.1,19.5,19.3,16.5$, 13.5, 0.0; IR (film): $\widetilde{v}=3310,2970,2953,1737,1721,1520,1372,1248,1230,1217,1058$, 858, 836, $694 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{Na}: 360.196542\left[M^{+}+\mathrm{Na}\right]$; found:
360.196099; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$: C 64.05, H 9.26; found: C 64.11, H 9.30 .

Compound 61c. DMAP ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$) and pivaloyl chloride ($0.9 \mathrm{~mL}, 7.3 \mathrm{mmol}$) were
 successively added to a solution of compound $\mathbf{6 1 b}$ ($546 \mathrm{mg}, 1.61$ $\mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 20 h before it was diluted with EtOAc and extracted with brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 10:1) to give product 61c as a colorless oil ($643 \mathrm{mg}, 94 \%$). $[\alpha]_{D}^{20}=+21.4\left(c=0.82, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.29(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.13(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}$, $9 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=176.7,156.4,136.3,133.8,123.9,119.8,85.1,80.4,69.2,62.7,48.1,38.6,29.1$, $26.7,17.4,17.1,14.5,12.1,-2.0$; IR (film): $\widetilde{v}=3314,2970,2955,1725,1520,1366,1248$, 1231, 1217, 1149, 1061, 966, 942, 858, 835, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}+\mathrm{Na}$: 444.254058 [$M^{+}+\mathrm{Na}$]; found: 444.254501 ; elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C} 65.52, \mathrm{H} 9.32$; found: C 65.40, H 9.28.

Compound 61d. A solution of compound 61c ($260 \mathrm{mg}, 0.616 \mathrm{mmol}$) in THF (7 mL) was added
 to a solution of Schwartz reagent ($275 \mathrm{mg}, 1.06 \mathrm{mmol}$) in THF (7 mL). The mixture was stirred in the dark for 45 min before it was cooled to $0^{\circ} \mathrm{C}$ and a solution of iodine ($270 \mathrm{mg}, 1.06 \mathrm{mmol}$) in THF (5 mL) was introduced. After stirring for 5 min , the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the mixture was stirred for 10 min , diluted with EtOAc and extracted with brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1) to give product 61d as a colorless syrup (273 mg , $81 \%) .[\alpha]_{D}^{20}=+15.6\left(c=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.40(\mathrm{dd}, J=14.4,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$, $0.98(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $177.3,157.0,148.2,136.7,133.7,124.5,120.5,81.5,76.1,63.3,48.7,43.7,39.2,27.4,18.0$, 16.5, 15.1, 12.6, -1.4; IR (film): $\widetilde{v}=3352,2970,2954,1725,1517,1455,1365,1247,1229$, 1217, 1149, 1061, 946, 858, 835, 766, $694 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{SiI}+\mathrm{Na}$: $572.166357\left[M^{+}+\mathrm{Na}\right]$; found: 572.166845 ; elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{SiI}: \mathrm{C}$ 50.27, H 7.34; found: C 50.20, H 7.39.

Compound 62. A solution of $\mathrm{LiBEt}_{3} \mathrm{H}(1.2 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a solution of compound 61d ($195 \mathrm{mg}, 0.355 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 h at that temperature, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and extracted
with brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the crude product was purified by flash chromatography (hexanes/EtOAc, $4: 1$) to give compound $\mathbf{6 2}$ as a colorless oil ($135 \mathrm{mg}, 82 \%$). $[\alpha]_{D}^{20}=+28.1\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $6.55(\mathrm{dd}, J=14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~m}, 3 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.15$
 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{bs}, 1 \mathrm{H}), 1.76$ $(\mathrm{s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=157.0,149.2$, 137.7, 135.9, 123.6, 120.7, 81.3, 75.9, 63.3, 48.7, 44.8, 18.0, 16.5, 15.0, 12.0, -1.4 ; IR (film): $\widetilde{v}=3337,2966,2887,1694,1519$, 1466, 1394, 1248, 1171, 1060, 945, 856, 835, 776, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SiI}+\mathrm{Na}: 488.108836\left[M^{+}+\mathrm{Na}\right]$; found: 488.108256; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{3}$ SiI: C 46.45, H 6.93; found: C 46.53, H 7.06.

Compound 53. A solution of TBAF ($0.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a solution of compound $62(128 \mathrm{mg}, 0.275 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at ambient temperature before a second batch of TBAF ($0.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was introduced. After additional 8 h , the mixture was diluted with EtOAc and extracted with aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and the organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated.

The resulting free amine $\mathbf{6 3}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. 57 ($75 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{HOBt}(40 \mathrm{mg}, 0.3 \mathrm{mmol}$), and $\mathrm{N}-$ methylmorpholine ($\mathrm{NMM}, 0.088 \mathrm{~mL}, 0.8 \mathrm{mmol}$) were successively added and the mixture was cooled to $0^{\circ} \mathrm{C}$. EDC $\mathrm{HCl}(68 \mathrm{mg}, 0.35 \mathrm{mmol})$ was then introduced and the mixture stirred at ambient temperature for 20 h . After dilution with EtOAc and extraction with brine, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc 1:1) to give product 53 as a white solid ($121 \mathrm{mg}, 80 \%$). $[\alpha]_{D}^{20}=$ $+29.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.63-6.48(\mathrm{~m}, 3 \mathrm{H}), 6.20-$ $6.10(\mathrm{~m}, 3 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dt}, J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.90-$ $0.85(\mathrm{~m}, 12 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) .0 .08(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.2,161.6,149.6$, $138.5,135.3,123.5,122.3,81.7,76.4,63.5,53.4,47.8,45.2,26.3,18.8,16.8,15.5,12.4,-5.0$; IR (film): $\widetilde{v}=3302,2928,2857,1650,1530,1385,1255,1107,953,834,710) \mathrm{cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ISi}+\mathrm{Na}$: 573.161605 [$\left.M^{+}+\mathrm{Na}\right]$; found: 573.161674.

Compound 64. $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.158 \mathrm{mmol})$ and (dppf) $\mathrm{PdCl}_{2}(12 \mathrm{mg}, 0.016 \mathrm{mmol})$ were
 added to a degassed solution containing compounds 62 ($50 \mathrm{mg}, 0.107 \mathrm{mmol}$) and 19 ($37 \mathrm{mg}, 0.127 \mathrm{mmol}$) in DMF (2.5 mL). The mixture was stirred for 2 h at ambient temperature before it was diluted with

EtOAc and extracted with brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $4: 1$) to give product 64 as a colorless syrup ($39 \mathrm{mg}, 70 \%$). $[\alpha]_{D}^{20}=+26.6\left(c=0.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.78$ (ddd, $\left.J=17.3,10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.18(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~m}$, $1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=17.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.75$ $(\mathrm{s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=157.0,138.1,136.9,135.6,134.1,133.2$, $133.0,132.8,131.4,131.0,123.2,121.0,113.4,82.1,81.6,63.3,56.3,48.8,41.6,36.0,23.6$, 19.9, 18.1, 17.3, 15.0, 11.9, -1.4; IR (film): $\widetilde{v}=3457,2925,2855,1737,1516,1448,1366$, 1229, 1216, 1099, 1060, 989, 858, 836, 776, $694 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{Si}+\mathrm{Na}: 526.332305$ [$M^{+}+\mathrm{Na}$]; found: 526.332366; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C} 69.14, \mathrm{H} 9.80$; found: C 68.96, H 9.72.

Compound 65. $\mathrm{EDC} \cdot \mathrm{HCl}(14.5 \mathrm{mg}, 0.0756 \mathrm{mmol})$ and 4-pyrrolidino-pyridine ($14.5 \mathrm{mg}, 0.0983$
 mmol) were added to a solution of compounds 47 ($20 \mathrm{mg}, 0.0756 \mathrm{mmol}$) and $64(19 \mathrm{mg}, 0.0377 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to ambient temperature and stirred for 48 h . It was then cooled again to $0^{\circ} \mathrm{C}$ before additional $\mathrm{EDC} \cdot \mathrm{HCl}(2.2 \mathrm{mg}, 0.0115 \mathrm{mmol})$ and 4-pyrrolidino-pyridine $(1.7 \mathrm{mg}, 0.0115 \mathrm{mmol})$ were introduced. After another 48 h at ambient temperature, the mixture was diluted with EtOAc, filtered through a pad of Celite, the filtrate was adsorbed on silica and submitted to flash chromatography (hexanes/EtOAc, $20: 1 \rightarrow 2: 1$) to furnish product 65 as a colorless oil (22 mg , $78 \%) .[\alpha]_{D}^{20}=+17.0\left(c=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.73(\mathrm{dd}, J=17.3$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=9.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 4 \mathrm{H}), 5.74$ (ddt, $J=17.3,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.91(\mathrm{~m}, 4 \mathrm{H}), 4.74(\mathrm{brs}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=8.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00$ (dt, $J=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.39(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=168.9,158.4,146.5,138.3,137.7,136.6,135.9,135.6,135.1$, $134.4,134.1,133.4,133.3,132.4,132.1,128.6,125.8,122.1,118.2,114.9,84.5,83.0,78.6,64.7$, $57.6,57.5,50.2,41.8,41.3,38.1,37.4,25.0,21.9,21.3,19.5,18.5,16.5,14.6,14.2,14.1,0.0$; IR (film): $\widetilde{v}=3336,2924,1712,1519,1448,1249,1098,991,966,859,834 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}$: 772.4944 [$M^{+}+\mathrm{Na}$]; found: 772.4942.

Compound 66. Complex $50(1 \mathrm{mg}, 0.0012 \mathrm{mmol})$ was added to a solution of compound 65 (9.0 $\mathrm{mg}, 0.0116 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the mixture was stirred at ambient temperature. After 24 h , a second portion of complex $50(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol})$ was introduced and stirring
 continued for 48 h before the reaction was quenched with ethyl vinyl ether ($50 \mu \mathrm{~L}$). After stirring for 1 h , all volatile materials were evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $\quad 12: 1 \rightarrow 8: 1$) to give product 66 as a pale brown solid ($6.5 \mathrm{mg}, 78 \%$). $[\alpha]_{D}^{20}=+5.0\left(c=0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.57(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.12$ (dq, $J=11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (dd, $J=14.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, $J=14.5,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (ddd, $J=15.5,9.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=15.5,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=14.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=14.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (dd, $J=10.5,5.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.09 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (brs, 1H), 4.14 (dd, $J=8.5,8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.16-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.12$ $(\mathrm{m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dt}, J=13.5,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.63-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{dd}, J=8.5,8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=167.6,157.0,145.6,137.1,136.9$, $136.2,133.9,133.8,133.7,133.3,132.4,132.3,132.1,131.2,129.8,128.8,126.0,125.6,125.4$, $120.6,83.3,79.9,77.0,63.3,56.5,55.9,48.8,41.0,38.3,35.3,23.2,21.5,20.8,18.1,16.8,15.1$, $13.2,12.1,12.1,-1.4$; IR (film): $\widetilde{v}=2927,1712,1514,1455,1251,1100,989,965,836 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{NO}_{6}+\mathrm{Na}$: 744.4627 [$M^{+}+\mathrm{Na}$]; found: 744.4629.

$86 \cdot 08 \longrightarrow$
LG'L8

$\rightarrow 6{ }^{6} \cdot{ }^{\circ} \cdot{ }^{\circ}$
$6 t^{\circ}$ LEI

\qquad

Iejimalide Analogues

Compound 68. A solution of TBAF ($17 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF) was added dropwise to a solution of compound $66(3.0 \mathrm{mg}, 0.0042 \mathrm{mmol})$ in THF $(0.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to reach ambient temperature and was stirred for 36 h before it was diluted with EtOAc and extracted with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The combined organic phases were dried over MgSO_{4} and evaporated to give amine 67 which was immediately used in the next step without further purification.

N-Formyl-L-valine ($0.8 \mathrm{mg}, 0.0054$
 mmol), HOAt ($0.70 \mathrm{mg}, 0.0050$ $\mathrm{mmol})$, and collidine ($1.7 \mu \mathrm{~L}, 0.013$ mmol) were added to a solution of crude 67 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$ before EDC $\mathrm{HCl}(1.2 \mathrm{mg}, 0.0063 \mathrm{mmol})$ was introduced. The mixture was stirred at ambient temperature for 20 h . A standard extractive work up followed by flash chromatography of the crude material (hexanes/EtOAc, 5:1 $\rightarrow 1: 2$) afforded product 68 ($3 \mathrm{mg}, 100 \%$) contaminated with ca. 10% isomeric impurities. An analytically pure sample was obtained by preparative HPLC as a colorless oil $(2.6 \mathrm{mg}, 75 \%) .[\alpha]_{D}^{20}=-5.0(c=$ $0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.68(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.79(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=15.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{dd}, J=15.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.15$ (m, 2H), $4.16(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{td}, J=9.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=15.5,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{dd}, J=15.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.88(\mathrm{~m}$, $2 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}$, $3 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.85(\mathrm{~m}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=170.4,167.1,160.4,145.9,136.9,136.0,135.9,133.9$, 133.7, 133.3, 133.1, 132.5, 131.8, 131.7, 130.0, 129.2, 126.0, 125.9, 125.5, 121.1, 83.1, 79.5, $76.9,57.2,56.4,55.5,46.7,41.6,41.4,38.5,35.3,31.3,23.3,21.3,21.2,19.5,18.1,16.9,14.9$, 13.0, 12.2, 12.1; IR (film): $\widetilde{v}=3287,2959,2924,2854,1651$ (br), 1547, 1461, 1377, 1259, 1217, 1102, 965, 801, $744 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{43} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}: 727.4663$ [$\left.M^{+}+\mathrm{Na}\right]$; found: 727.4657.

Compound 69b. Amine 67 was prepared as described above from compound 66 (8 mg , $0.0113 \mathrm{mmol})$ and TBAF ($45 \mu \mathrm{~L}$, 1M in THF). N-Benzoyl-O-TBS-L-serine ($7.5 \mathrm{mg}, 0.023 \mathrm{mmol}$), HOBt ($2.8 \mathrm{mg}, 0.01 \mathrm{mmol}$), and

NMM ($4 \mu \mathrm{~L}, 0.036 \mathrm{mmol}$) were added to a solution of crude amine 67 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ and the mixture was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{EDC} \cdot \mathrm{HCl}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ was introduced. After stirring for 20 h at ambient temperature, the mixture was adsorbed on silica and the product purified by flash chromatography (hexanes/EtOAc, 2:1), furnishing product 69b ($3 \mathrm{mg}, 31 \%$) that contained ca. 5$10 \%$ of isomeric impurities. $[\alpha]_{D}^{20}=-7\left(c=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $7.81(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.09-5.85 (m, 3H), 5.56-5.43 (m, 2H), 5.42-5.34 (m, 2H), $5.18(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}$, $1 \mathrm{H}), 4.20-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.18-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.47(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{bs}, 12 \mathrm{H}), 1.75$ $(\mathrm{s}, 3 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 12 \mathrm{H}), 0.14(\mathrm{~s}$, $3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.4,167.5,167.2,145.6,137.1,135.9$, $134.3,134.2,134.1,133.8,133.7,133.3,132.4,132.3,132.1$ (2x), 132.0, 131.2, 129.8, 128.9, $128.8,127.3,125.5,125.4,121.6,83.3,79.8,77.0,63.2,56.5,55.9,55.0,47.4,41.0(2 \mathrm{x}), 38.3$, $35.3,25.9,23.2,21.5,20.8,18.4,16.8,15.2,13.1,12.1,12.0,-5.4,-5.5$; IR (film): $\widetilde{v}=3298$, 2925, 2856, 1711, 1640, 1535, 1463, 1258, 1215, 1100, 988, 963, 836, 778, $692 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{53} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}$: $905.547050\left[M^{+}+\mathrm{Na}\right]$; found: 905.547729.

Compound 69. A solution of TBAF ($4 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF) was added to a solution of compound 69b ($3 \mathrm{mg}, 0.0034 \mathrm{mmol}$) in THF
 $(0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued at that temperature for 20 min . The mixture was adsorbed on silica and the product purified by flash chromatography (hexanes/ EtOAc, 1:1) to give compound

69 ($1.5 \mathrm{mg}, 57 \%$) which contained $\sim 10 \%$ of isomeric impurities. An analytically pure sample was obtained by preparative HPLC. $[\alpha]_{D}^{20}=+4\left(c=0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ $(\mathrm{m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.94(\mathrm{~m}, 2 \mathrm{H})$, $5.89(\mathrm{~d}, ~ J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.60$ $(\mathrm{m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=9.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}$, $1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.29$ $(\mathrm{m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61-$ $1.54(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=171.3,168.2,167.5,145.6,137.1,136.1,135.6,134.2,133.8,133.7$, 133.7, 133.3, 132.4 (2x), 132.3, 132.1, 131.2, 129.8, 129.0, 128.8, 127.5, 126.0, 125.4, 125.3, $121.0,83.1,80.0,77.1,63.1,56.5,55.9,55.4,47.0,41.0,40.8,38.2,35.3,23.2,21.5,20.8,16.8$, 15.2, 13.2, 12.1, 12.0; IR (film): $\widetilde{v}=3333,2925,1710,1643,1529,1448,1257,1216,1104$,

989, 964, 744, $712 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}: 791.460572\left[M^{+}+\mathrm{Na}\right]$; found: 791.460821.

Compound 70. $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mu \mathrm{~L}, 0.0031 \mathrm{mmol})$ and dansyl chloride $(0.8 \mathrm{mg}, 0.0029 \mathrm{mmol})$ were
 sequentially added to a solution of crude amine 67 [prepared from $66(2 \mathrm{mg})$ as described above] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.03 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 6 h , the mixture was adsorbed on silica and the product purified by flash chromatography (hexanes/EtOAc, $20: 1 \rightarrow 5: 1)$ to give product 70 as a white solid ($1 \mathrm{mg}, 45 \%$ over 2 steps). $[\alpha]_{D}^{20}=+4$ ($c=0.1$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04-5.93(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.37(\mathrm{~m}, 2 \mathrm{H})$, $5.08(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{td}, J=10.0,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dt}, J=10.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; IR (film): $\widetilde{v}=3346,2926,1712$, 1652, 1614, 1553, 1446, 1389, 1262, 1212, 1147, 1098, 990, $967 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{49} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}+\mathrm{Na}$: $833.4539\left[M^{+}+\mathrm{Na}\right]$; found: 833.4534.

Total Synthesis of Iejimalide A

Compound 76. Compounds $36(335 \mathrm{mg}, 0.807 \mathrm{mmol})$ and $75^{15}(332 \mathrm{mg}, 0.74 \mathrm{mmol})$, CuTC ($200 \mathrm{mg}, 1.05 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(51 \mathrm{mg}, 0.0044 \mathrm{mmol})$ were
 successively added to thoroughly dried $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{NBu}_{4}$ (475 mg , 1.034 mmol) in degassed DMF (12 mL). The resulting brown mixture was stirred for 1 h before it was diluted with $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The mixture was filtered through a pad of Celite, the filtrate was diluted with EtOAc and washed with brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 20:1) to give the silyl ether $76 \mathrm{~b}(\mathrm{R}=\mathrm{TBDPS})$ as a colorless oil ($271 \mathrm{mg}, 82 \%$). $[\alpha]_{D}^{20}=-18.5\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.67(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 6.13(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}$, $1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H})$, $3.56(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=137.2,136.0,135.3$, 134.4, 134.3, 132.6, 131.2, 129.9, 128.0, 116.7, 77.2, 69.1, 56.0, 40.5, 39.9, 27.0, 19.5, 16.9, 13.2; IR (film): $\widetilde{v}=2958,2931,2858,1472,1428,1389,1188,1103,965,965,914,823,739$, $701 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}: 471.268976$ [$\left.M^{+}+\mathrm{Na}\right]$; found: 471.269022; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}$: C 77.62, H 8.99; found: C 77.68, H 9.06 .

A solution of TBAF ($0.4 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added to a solution of compound 76 b (114 mg , $0.254 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at ambient temperature for 16 h . A standard extractive work up followed by flash chromatography of the crude product (hexanes/EtOAc, 4:1) gave compound $76(\mathrm{R}=\mathrm{H})$ as a colorless oil ($50 \mathrm{mg}, 94 \%$). $[\alpha]_{D}^{20}=-9.6(c$ $\left.=0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.18(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.56$ (dd, $J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{bs}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=136.9,135.2,135.1,132.1,131.7,116.8,77.1,67.7,56.2,40.4$ (2x), 16.8, 13.2; IR (film): $\widetilde{v}=3403,2974,2926,1641,1450,1383,1241,1189,1079,1037$, 964, 914, $816 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}+\mathrm{Na}$: 233.151197 [$\left.M^{+}+\mathrm{Na}\right]$; found: 233.151456; elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: C 74.24, H 10.54; found: C 74.20, H 10.42.

Compound 84. 4-Pyrrolidinylpyridine ($1.4 \mathrm{mg}, 0.0095 \mathrm{mmol}$) and DCC ($13.3 \mathrm{mg}, 0.0646 \mathrm{mmol}$) were added to a solution of $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOH}(10.4 \mu \mathrm{~L}, 0.0646 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 10 min at ambient temperature, the resulting suspension was cooled to $0^{\circ} \mathrm{C}$ before a solution of compound $54(38 \mathrm{mg}, 0.0646 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was

[^3]introduced. The mixture was warmed to ambient temperature within 1 h and stirred for 48 h . After this time, the mixture was again cooled to $0^{\circ} \mathrm{C}$ before more $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOH}(10.4$ $\mu \mathrm{L}, 0.0646 \mathrm{mmol}$), 4-pyrrolidinyl-pyridine ($1.4 \mathrm{mg}, 0.0095 \mathrm{mmol}$), and DCC ($13.3 \mathrm{mg}, 0.0646$ mmol) were introduced. After stirring for another 48 h , a standard extractive work up followed by purification of the crude material by flash chromatography (hexanes/EtOAc, 4:1) gave product $\mathbf{8 4}$ as a colorless oil ($41 \mathrm{mg}, 82 \%$). $[\alpha]_{D}^{20}=+23.6\left(c=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=17.3$,
 $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~m}, 2 \mathrm{H}), 6.23$ (d, J $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~m}, 3 \mathrm{H}), 5.65$ (dd, $J=14.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (m, $1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.01 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}$, $1 \mathrm{H}), 4.07(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}$, $1 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.8,165.3,161.2,135.9,135.8,134.2,134.1,133.0(2 \mathrm{x}), 132.9,131.0,130.7$, $124.8,121.7,113.5,84.5,81.6,63.1,62.8,56.2,53.5,47.4,39.4,36.0,34.0,25.9,23.6,19.8$, $18.4,16.9,16.6,16.5,15.2,12.6,-5.4,-5.5$; IR (film): $\widetilde{v}=3291,2928,2857,1733,1656,1532$, 1463, 1388, 1255, 1100, 1050, 1022, 972, $835,777 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{39} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{PSi}+\mathrm{Na}: 789.424569$ [$\left.M^{+}+\mathrm{Na}\right]$; found: 789.423875; elemental analysis calcd (\%) for $\mathrm{C}_{39} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{PSi}: \mathrm{C} 61.07$, H 8.80 ; found: C 61.18, H 8.73.

Compound 85. Method A: Hünig base ($3.8 \mu \mathrm{~L}, 0.021 \mathrm{mmol}$) was added to a mixture of
 compound 84 ($15 \mathrm{mg}, 0.0195$ $\mathrm{mmol})$ and $\mathrm{LiCl}(1.7 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in $\mathrm{MeCN}(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at ambient temperature for 15 min , the mixture was again cooled to $0^{\circ} \mathrm{C}$ before a solution of crude aldehyde 77 [freshly prepared in situ upon oxidation of $76(8 \mathrm{mg}, 0.038 \mathrm{mmol}){ }^{16}$ in $\mathrm{MeCN}(0.4$ mL) was added dropwise. After stirring at ambient temperature for 16 h , the mixture was diluted with EtOAc and extracted with brine, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated,

[^4]and the residue purified by flash chromatography (hexanes/EtOAc, 1:1) to give product 85 (5 mg , $31 \%, \geq 85 \%$ pure) and recovered 84 ($8 \mathrm{mg}, 47 \%$ conversion).

Method B: Hünig base ($2.2 \mu \mathrm{~L}, 0.012 \mathrm{mmol}$) was added to a mixture of compound $\mathbf{8 4}(9 \mathrm{mg}$, $0.0117 \mathrm{mmol})$ and $\mathrm{LiCl}(1 \mathrm{mg}, 0.023 \mathrm{mmol})$ in $\mathrm{MeCN}(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at ambient temperature for 15 min , the mixture was again cooled to $0^{\circ} \mathrm{C}$ before a solution of crude 77 [freshly prepared upon oxidation of $76(3.5 \mathrm{mg}, 0.0167 \mathrm{mmol})$] in $\mathrm{MeCN}(0.1 \mathrm{~mL})$ was slowly introduced. After stirring at ambient temperature for 20 h , the mixture was again cooled to $0^{\circ} \mathrm{C}$ and another batch of 77 [freshly prepared from 2 mg of $76(0.0095 \mathrm{mmol})$] was added. Stirring was continued for another 16 h before a standard extractive work up and flash chromatography of the crude material (hexanes/EtOAc, 1:1) gave product 85 ($3.5 \mathrm{mg}, 36 \%, \geq 85 \%$ pure) and recovered $84\left(4 \mathrm{mg}, 55 \%\right.$ conversion). $[\alpha]_{D}^{20}=+16.4\left(c=0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ $(\mathrm{m}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.05(\mathrm{~m}, 4 \mathrm{H}), 5.79(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~m}, 2 \mathrm{H})$, $5.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}$, $1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.47$ $(\mathrm{m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.8,166.0,161.1,152.5,136.7,136.3,135.4,135.2$, 134.8, 134.7, 134.2, 133.1, 133.0, 132.8, 132.3, 131.2, 131.0, 130.6, 124.4, 121.8, 120.3, 116.8, $113.5,82.9,81.6,77.2,63.1,56.2,56.1,53.4,47.5,40.4,39.8,39.7,36.0,25.9,23.6,19.8,17.0$, $15.2,16.5,15.2,13.2,12.8,-5.4,-5.5$; IR (film): $\widetilde{v}=3295,2926,2856,1717,1651,1539$, 1463, 1380, 1257, 1171, 1098, 988, 836, $778 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{48} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}$: $843.531401\left[M^{+}+\mathrm{Na}\right]$; found: 843.530737.

Compound 86. Complex $\mathbf{5 0}(1 \mathrm{mg}, 0.0012 \mathrm{mmol})$ was added to a solution of compound $\mathbf{8 5}$ (9.5
 $\mathrm{mg}, 0.0115 \mathrm{mmol}$, ca. 85% pure) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ and the resulting mixture was stirred at ambient temperature for 24 h before a second portion of catalyst 50 (0.5 $\mathrm{mg}, 0.0006 \mathrm{mmol}$) was introduced and stirring was continued for another 48 h . The reaction was quenched with ethyl vinyl ether $(50 \mu \mathrm{~L})$ and stirred for 15 min . Evaporation of the solvent followed by flash chromatography (hexanes/EtOAc, 1:1) gave product 86 as a mixture of isomers ($5 \mathrm{mg}, 55 \%, \geq 80 \%$ pure). Purification by preparative HPLC gave $\mathbf{8 6}$ in $\geq 90 \%$ purity. $[\alpha]_{D}^{20}=-18\left(c=0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{MeOD}): \delta=8.14(\mathrm{~s}, 1 \mathrm{H})$, $6.85(\mathrm{dd}, J=15.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.52$ $(\mathrm{m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=14.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=15.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~m}$, $2 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}$,
$3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 6 \mathrm{H})$, $1.79(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (s, 9H), 0.09 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=171.8,167.8,163.8,154.1,138.3,136.9$, 136.7, 135.2, 134.4, 134.1, 133.6, 133.5, 132.9, 132.5, 131.9, 130.7, 129.3, 126.6, 126.0, 121.9, $120.2,84.5,81.5,78.1,64.4,56.9,56.1,55.4,47.8,42.9,41.3,41.1,36.1,26.3,23.9,22.1,20.9$, 19.1, 17.2, 15.3, 13.4, 12.3, -5.4; IR (film): $\widetilde{v}=2926,2857,1717,1648,1455,1377,1347$, 1259, 1221, 1106, 987, 836, $779 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{46} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}$: $815.500098\left[M^{+}+\mathrm{Na}\right]$; found: 815.499381.

Iejimalide A (1). A solution of TBAF $(4.4 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF) was added to a solution of compound 86 ($3.5 \mathrm{mg}, 0.0044 \mathrm{mmol}$)
 in THF $(0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 10 min at this temperature, the mixture was adsorbed on silica and the product purified by flash chromatography (hexanes/EtOAc, 1:1) to give iejimalide $\mathrm{A}(2 \mathrm{mg}, 67 \%$, $\geq 80 \%$ pure). An analytically pure sample of 1 was obtained by preparative HPLC. The spectroscopic data are in full agreement with those of the natural product reported in the literature. $[\alpha]_{D}^{20}=-32\left(c=0.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(-36.4, \mathrm{CHCl}_{3}\right) ;{ }^{14 \mathrm{a}}{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{MeOD}): \delta=$ $8.17(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=15.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{dd}, J=11.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=14.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~d}, J=15.5$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dd, $J=15.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (dd, $J=15.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (t, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{td}, J=9.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}$, $3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.03-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 1 \mathrm{H})$, 2.34-2.28 (m, 1H), 1.96-1.93 (m, 1H), $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.61-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, MeOD): $\delta=172.1,167.8,163.9,154.0,138.3,137.0,136.7,135.2,134.2,134.1$, 133.6, 133.5, 132.9, 132.6, 131.9, 130.7, 129.3, 126.6, 126.0, 121.2, 120.2, 84.6, 81.5, 78.1, 63.0, $56.9,56.1,55.5,47.5,42.9,41.3,41.1,36.1,23.9,22.0,20.9,17.2,15.1,13.4,12.2 ; \operatorname{IR}$ (film): \widetilde{v} $=3367,2924,2853,1716,1658,1468,1260,1108,989,838 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}$: $701.413622\left[M^{+}+\mathrm{Na}\right]$; found: 701.413317.

$$
\begin{aligned}
& 9 Z^{\prime} \varepsilon G \\
& \varepsilon G \cdot \varepsilon G
\end{aligned}
$$

とて．9G
S8＇ス9 $\quad \longrightarrow$

8I•T9I
LZ＇G9I
$6 L \cdot 69 I \longrightarrow$

lejimalide $A(1)$

\%	$\stackrel{ \pm}{ \pm}$	
N		

	¢\%
1 V/1/	

Iejimalide A (1)

Iejimalide A (1)

[^0]: 8 Hill, D. R.; Hsiao, C.-N.; Kurukulasuriya, R.; Wittenberger, S. J. Org. Lett. 2002, 4, 111.

[^1]: ${ }^{12}$ Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62, 7768.
 ${ }^{13}$ Dominguez, B.; Pazos, Y.; De Lera, A. R. J. Org. Chem. 2000, 65, 5917.

[^2]: 14 (a) Kobayashi, J.; Cheng, J.; Ohta, T.; Nakamura, H.; Nozoe, S.; Hirata, Y.; Ohizumi, Y.; Sasaki, T. J. Org. Chem. 1988, 53, 6147. (b) Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. Tetrahedron Lett. 1991, 32, 797. (c) Nozawa, K.; Tsuda, M.; Ishiyama, H.; Sasaki, T.; Tsuruo, T.; Kobayashi, J. Bioorg. Med. Chem. 2006, 14, 1063. (d) Tsuda, M.; Nozawa, K.; Shimbo, K.; Ishiyama, H.; Fukushi, E.; Kawabata, J.; Kobayashi, J. Tetrahedron Lett. 2003, 44, 1395.

[^3]: 15 Prepared as described for the other enantiomer in: Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, I. H.; Crawford, J. J. Org. Chem. 2003, 68, 6096.

[^4]: 16 Dess-Martin periodinane ($20 \mathrm{mg}, 0.047 \mathrm{mmol}$) was added to a solution of compound $76(8 \mathrm{mg}, 0.038$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the mixture stirred at ambient temperature for 30 min . After dilution with hexane and aq. sat. NaHCO_{3}, the suspension was filtered through a pad of Celite and extracted with aq. sat. NaHCO_{3}, aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. Drying of the organic phase over MgSO_{4} and evaporation of the solvent gave crude 77 which was immediately used in the next step because it is very unstable even upon storage at low temperature.

